비 유클리드 기하학. Non -Euclidean Geometry ,byHenryManning

HenryManning | 뉴가출판사 | 2020년 03월 11일 | PDF

이용가능환경 : Windows/Android/iOS 구매 후, PC, 스마트폰, 태블릿PC에서 파일 용량 제한없이 다운로드 및 열람이 가능합니다.

구매

전자책 정가 22,000원

판매가 22,000원

도서소개

자연과학/공학 > 수학

비 유클리드 기하학. Non -Euclidean Geometry ,byHenryManning
2000년 이전쯤의 그리스 수학자 유클리드의 기하학에서 1650년경의 뉴톤의 수학으로부터 1900년도 초에 비유클리드기하학 및 미적분학이 영국에서 발달하고 1916년도경에 아이슈타인의 상대성이론이 나옴.
이책 즉, 비유클리드기하학은 미국의 브라운대학교 교수가 1901년도에 지은책.
HENRY PARKER MANNING, Ph.D.
Assistant Professor of Pure Mathematics
in Brown University
PREFACE
Non-Euclidean Geometry is now recognized as an important branch of Mathematics. Those who teach Geometry should have some knowledge of this subject,
and all who are interested in Mathematics will find much to stimulate them and
much for them to enjoy in the novel results and views that it presents.
This book is an attempt to give a simple and direct account of the Non Euclidean Geometry, and one which presupposes but little knowledge of Mathematics. The first three chapters assume a knowledge of only Plane and Solid
Geometry and Trigonometry, and the entire book can be read by one who has
taken the mathematical courses commonly given in our colleges.
No special claim to originality can be made for what is published here. The
propositions have long been established, and in various ways. Some of the proofs
may be new, but others, as already given by writers on this subject, could not be
improved. These have come to me chiefly through the translations of Professor
George Bruce Halsted of the University of Texas.
I am particularly indebted to my friend, Arnold B. Chace, Sc.D., of Valley
Falls, R. I., with whom I have studied and discussed the subject.
HENRY P. MANNING.
Providence, January, 1901.

저자소개

비 유클리드 기하학. Non -Euclidean Geometry ,byHenryManning
미국의 브라운대학교 수학과 교수.

목차소개

비 유클리드 기하학. Non -Euclidean Geometry ,byHenryManning
Contents
PREFACE ii
1 INTRODUCTION 1
2 PANGEOMETRY 3
2.1 Propositions Depending Only on the Principle of Superposition . 3
2.2 Propositions Which Are True for Restricted Figures . . . . . . . 6
2.3 The Three Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . 9
3 THE HYPERBOLIC GEOMETRY 25
3.1 Parallel Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Boundary-curves and Surfaces, and Equidistant-curves and Surfaces 35
3.3 Trigonometrical Formulæ . . . . . . . . . . . . . . . . . . . . . . 42
4 THE ELLIPTIC GEOMETRY 51
5 ANALYTIC NON-EUCLIDEAN GEOMETRY 56
5.1 Hyperbolic Analytic Geometry . . . . . . . . . . . . . . . . . . . 56
5.2 Elliptic Analytic Geometry . . . . . . . . . . . . . . . . . . . . . 68
5.3 Elliptic Solid Analytic Geometry . . . . . . . . . . . . . . . . . . 74
6 HISTORICAL NOTE 79

회원리뷰 (0)

현재 회원리뷰가 없습니다.

첫 번째 리뷰를 남겨주세요!