개정판을 내며
들어가는 말
제1부 수학사의 시작 고대 오리엔트
숫자보다 그림을 먼저 그린 인간 | 보이는 대로 그린 구석기인 | 아는 대로 그린 신석기인 | 기하학의 출발은 측량에서 | 추상화를 먼저 그리는 어린아이들 | 60진법을 개발한 메소포타미아문명 | 어린 왕 투탕카멘의 저주 | 피라미드의 수학적 비밀 | 북어처럼 마른 시체가 문화유산? | 10진법과 60진법의 차이는? | 수학은 강력한 통치 수단 | 이집트의 수학 노트 파피루스 | 단위분수만 사용한 이집트인 | 메소포타미아의 수학 노트 점토판 | 아브라함의 고향 우르 | 를 다룬 메소포타미아 수학 | 1,000년 앞서 피타고라스의 정리를 사용한 이집트 | 이집트의 아름다운 상형문자 | 역사학의 아버지 헤로도토스의 통찰 | 문명과 함께 사라진 이집트 수학 | 다시 살아나는 이집트의 문화 | 이집트 미술은 죽은 자의 미술 | 춤과 음악, 오락을 즐긴 이집트인 | 호루스의 눈을 수학으로 풀다 | 원주율의 근삿값은 얼마로? | 메소포타미아의 설형숫자 | 이집트 수학은 왜 몰락했을까?
제2부 비례와 균형을 중시한 그리스
미노아문명과 미케네문명이 합쳐진 에게문명 | 왜 그리스에서 수학이 발달했을까? | 수학에 영향을 미친 알파벳 | 아테네의 민주주의와 스파르타의 군국주의 | 수학을 잘하는 나라는 운동도 잘한다? | 마라톤 전투에서 유래한 마라톤 경주 | 그리스인의 종교 | 제단의 크기를 두 배로 늘리는 문제 | 수학자는 곧 철학자 | 그리스의 숫자와 수학 | 신비적인 수학자 피타고라스 | 여성 교육을 주장한 플라톤 | 그리스의 3대 난문제 | 알렉산드리아 대학의 설립자 알렉산드로스대왕 | 알렉산드리아의 파로스 등대 | 헬레니즘 문화의 탄생 | 기하학의 완성자 유클리드 | 유클리드기하는 만지는 기하 | 지구의 둘레를 측정한 에라토스테네스 | 헬레니즘 문화의 종말 | 비례와 대칭, 조화의 그리스 미술 | 술잔에서 신전까지 황금비로 | 아름다운 베누스와 추한 노파
제3부 수도원에 갇힌 중세 수학
역사에 등장하는 로마 | 싸움터에서도 글을 쓴 로마의 카이사르 | 카이사르와 안토니우스를 굴복시킨 클레오파트라 | 아우구스투스의 통치 | 아우구스투스의 후손인 네로 황제 | 하나님의 아들 예수의 등장 | 300년의 크리스트교 탄압이 막을 내리다 | 햇빛과 비를 피할 수 있는 콜로세움 | 목욕을 좋아한 로마인 | 중세 유럽의 교과서 『성경』 | 크리스트교의 경건한 미술 | 중세의 매력 없는 그림들 | 춤추는 미녀들 | 카노사의 굴욕 | 신성한 전쟁 십자군 원정 | 도시의 발생 | 도시의 새로운 주인, 시민계급 | 여전히 차별받는 여성 | 중세의 혼수품, 리모주 상자 | 중세에도 부동산 거래는 도장으로 | 주전자 맞아요? | 앞다투어 대성당을 건축하다 | 천상의 빛 스테인드글라스 | 수도원에 갇힌 중세의 수학 | 수를 분류한 보에티우스 | 부활주일을 계산한 비드 | 웃기는 수학 문제를 내는 알비누스 | 중세 도시에 대학이 등장하다 | 유럽을 휩쓴 페스트 | 르네상스의 상업 산술을 준비한 피보나치 | 수학적으로 새끼를 낳는 토끼 | 로마식 계산과 아라비아식 계산의 싸움 | 르네상스를 준비하는 사회 | 무한 개념을 도입한 오렘 | 르네상스 미술의 선구자 치마부에와 조토
제4부 상업 산술이 발달한 르네상스
르네상스 시대의 개막 | 하나님 중심에서 인간 중심으로 | 역사를 바꾼 마르코 폴로의 중국 여행 | 상거래에는 인도숫자가 딱이네! | 종교개혁에 불을 지핀 구텐베르크의 금속활자 | 기하학을 흔들어놓은 탐험가들 | 사영기하는 보는 기하 | 비참한 존재에서 영광 받을 존재로 | 식물도감을 뛰어넘는 보티첼리의 탐구 | 원근법=투시화법 | 최초의 원근법 그림을 그린 마사초 | 사인·코사인의 정리를 만든 레티쿠스 | 복식부기의 아버지 파치올리 | 사보나롤라는 예언자인가, 이단자인가? | 「최후의 만찬」은 누구의 것이 최고? | 미술가가 수학 문제를 어떻게? 몸으로! | 미켈란젤로는 화가인가, 조각가인가? | 고대 그리스 학자들을 초대한 라파엘로 | 경제 발전이 방정식 문제를 촉진하다 | 복리의 위력 | 르네상스 수학의 대표 주자 페로와 카르다노 | 다빈치 기법을 부정한 틴토레토 | 근대 수학을 준비한 네이피어와 브리그스 | 기호의 정비 | 그림은 투영의 단면 | 원근법의 수학적 이론
제5부 빛, 운동, 속도를 중시한 근대
직업은 하나님이 주신 소명 | 가내수공업에서 공장제수공업으로 | 17세기의 위대한 발견 | 시간은 돈이다 | 갈릴레이는 과학적 영웅? | 천문학의 교통경찰 뉴턴 | 최초의 미적분학 저서 『자연철학의 수학적 원리』 | 대수학+기하학=해석기하학 | 상금이 걸린 페르마의 마지막 정리 | 대박을 터트린 와일스 교수 | 같은 생각을 가진 화가와 수학자 | 역동적인 바로크미술 | 17세기의 탐구 주제: 빛·운동·속도 | 최초의 여성 화가 젠틸레스키 | 뚱뚱한 여자를 좋아한 루벤스 | 순간의 화가 할스 | 사진일까? 초상화일까? | 불공평한 단체 사진 「야간 순찰」 | 독신주의자 뉴턴 | 과학에서 소외된 여성 | 수학 때문에 귀족이 된 뉴턴 | 컴퓨터를 예언한 라이프니츠 | 미적분학에서 공동 우승한 뉴턴과 라이프니츠 | 사치스러웠던 유럽의 18세기 | 프랑스대혁명이 일어나다 | 그네 타기가 외설적이라고?! | 영웅 나폴레옹의 등장
제6부 현대 수학과 현대 미술
19세기는 과학의 세기 | 자율성을 추구한 19세기 | 큰 무한과 작은 무한을 비교한 칸토어 | 1883년은 독특한 해 | 초상화 대신 독사진으로 | 여성의 정체성을 표현한 나체 자화상 | 제1차 세계대전의 영향 | 원근법을 파괴하는 추상 | 사물을 단순화시키는 추상 | 수학자와 미술가의 뫼비우스 띠 | 초현실의 세계 | 힐버트의 무한 호텔 | 천재의 건망증 | 4차원을 표현하는 화가 | 토폴로지의 세계: 직선=곡선 | 마그리트의 패러독스 | 힐버트 공간과 초현실주의 | 파격적인 초현실주의 작품 | 초현실주의 화풍으로 변신한 아테네 학당 | 수학의 명제와 회화의 패러독스 | 황금비와 소실점을 추구하는 초현실주의 미술 | 21세기 「최후의 만찬」은 지구의 종말? | ‘이중 초상’의 원리는 시각적 착시 | 서울 한복판에 설치된 초현실적인 공공 조각 | 새로운 기하학의 등장 | 한국이 낳은 천재 비디오 작가 | 의자에 표현된 토폴로지 | 성 역할 고정관념에도 토폴로지
제7부 동서양의 수학과 미술의 비교
제1장 동서양의 원근법 차이
수학은 학문의 핵심 | 아폴론적 정신이 논증기하학으로 | 문자는 사유 형식의 핵심 | 중국의 독특한 투시법 | 중국 고유의 삼원법(三遠法) | 중국에 전파된 서양의 투시화법 | 조선에 상륙한 서양의 투시법 | 영·정조 시대, 문화가 융성하다
제2장 추상화의 경로가 다른 동서양의 회화
동양과 서양의 자화상은 어떻게 다른가? | 역동적인 조선의 풍속화 | 동양화에도 서양의 점묘화법이 적용되었다? | 동양의 감필법 | 패러다임을 넘어서는 범패러다임
참고문헌