상대성이론의 수학적이론. The Book of The Mathematical Theory of Relativity, by Arthur Stanley

Arthur Stanley | 뉴가출판사 | 2020년 09월 08일 | PDF

이용가능환경 : Windows/Android/iOS 구매 후, PC, 스마트폰, 태블릿PC에서 파일 용량 제한없이 다운로드 및 열람이 가능합니다.

구매

전자책 정가 39,000원

판매가 39,000원

도서소개

자연과학/공학 > 수학
상대성이론의 수학적이론. The Book of The Mathematical Theory of Relativity, by Arthur Stanley
상대성원리의 물리적 개념에 수학의 공식을 적용해서 설명한 책으로 영국의 캠브리지 대학교의 교수가 기술한 책.
과거에는 철학에 수학 천문학 물리학등이 포함됨.
THE MATHEMATICAL THEORY
OF
RELATIVITY
BY
A. S. EDDINGTON, M.A., M.Sc., F.R.S.
PLUMIAN PROFESSOR OF ASTRONOMY AND EXPERIMENTAL
PHILOSOPHY IN THE UNIVERSITY OF CAMBRIDGE
CAMBRIDGE
AT THE UNIVERSITY PRESS
1923

목차연속 3.
CHAPTER V
CURVATURE OF SPACE AND TIME
SECTION PAGE
65. Curvature of a four-dimensional manifold . . . . . . . . . . . . . . . . . . . . . . 251
66. Interpretation of Einstein’s law of gravitation . . . . . . . . . . . . . . . . . . 257
67. Cylindrical and spherical space-time . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
68. Elliptical space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
69. Law of gravitation for curved space-time . . . . . . . . . . . . . . . . . . . . . . . 268
70. Properties of de Sitter’s spherical world . . . . . . . . . . . . . . . . . . . . . . . . 271
71. Properties of Einstein’s cylindrical world . . . . . . . . . . . . . . . . . . . . . . . 280
72. The problem of the homogeneous sphere . . . . . . . . . . . . . . . . . . . . . . . 284
CHAPTER VI
ELECTRICITY
73. The electromagnetic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
74. Electromagnetic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
75. The Lorentz transformation of electromagnetic force . . . . . . . . . . . 304
76. Mechanical effects of the electromagnetic field. . . . . . . . . . . . . . . . . . 305
77. The electromagnetic energy-tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
78. The gravitational field of an electron. . . . . . . . . . . . . . . . . . . . . . . . . . . 313
79. Electromagnetic action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
80. Explanation of the mechanical force. . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
81. Electromagnetic volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
SECTION PAGE
82. Macroscopic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

저자소개

상대성이론의 수학적이론. The Book of The Mathematical Theory of Relativity, by Arthur Stanley
영국 캠브리지 대학교의 교수.
THE MATHEMATICAL THEORY
OF
RELATIVITY
BY
A. S. EDDINGTON, M.A., M.Sc., F.R.S.
PLUMIAN PROFESSOR OF ASTRONOMY AND EXPERIMENTAL
PHILOSOPHY IN THE UNIVERSITY OF CAMBRIDGE
CAMBRIDGE
AT THE UNIVERSITY PRESS
1923

목차 4.
Part II. Generalised Theory
91. Parallel displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
92. Displacement round an infinitesimal circuit . . . . . . . . . . . . . . . . . . . . 363
93. Introduction of a metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
94. Evaluation of the fundamental in-tensors. . . . . . . . . . . . . . . . . . . . . . . 370
95. The natural gauge of the world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
96. The principle of identification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
97. The bifurcation of geometry and electrodynamics . . . . . . . . . . . . . . 379
SECTION PAGE
98. General relation-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
99. The tensor ?B
?νσ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
100. Dynamical consequences of the general properties of world invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
101. The generalised volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
102. Numerical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
103. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

목차소개

상대성이론의 수학적이론. The Book of The Mathematical Theory of Relativity, by Arthur Stanley
CONTENTS
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
CHAPTER I
ELEMENTARY PRINCIPLES
SECTION PAGE
1. Indeterminateness of the space-time frame . . . . . . . . . . . . . . . . . . . . . 11
2. The fundamental quadratic form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3. Measurement of intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4. Rectangular coordinates and time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5. The Lorentz transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6. The velocity of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7. Timelike and spacelike intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8. Immediate consciousness of time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9. The “3 + 1 dimensional” world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10. The FitzGerald contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
SECTION PAGE
11. Simultaneity at different places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
12. Momentum and mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13. Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
14. Density and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
15. General transformations of coordinates. . . . . . . . . . . . . . . . . . . . . . . . . 55
16. Fields of force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
17. The Principle of Equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
18. Retrospect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
CHAPTER II
THE TENSOR CALCULUS
19. Contravariant and covariant vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
20. The mathematical notion of a vector. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
21. The physical notion of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
22. The summation convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
23. Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
24. Inner multiplication and contraction. The quotient law . . . . . . . . 85
25. The fundamental tensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
26. Associated tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
27. Christoffel’s 3-index symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
28. Equations of a geodesic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
29. Covariant derivative of a vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
30. Covariant derivative of a tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

회원리뷰 (0)

현재 회원리뷰가 없습니다.

첫 번째 리뷰를 남겨주세요!