인공지능 구조 원리 교과서

발자와 프로젝트 매니저를 위한 AI 수업, 머신러닝 · 딥러닝 · CNN · RNN · LLM 메커니즘 해설

송경빈 | 보누스 | 2024년 03월 25일 | PDF

이용가능환경 : Windows/Android/iOS 구매 후, PC, 스마트폰, 태블릿PC에서 파일 용량 제한없이 다운로드 및 열람이 가능합니다.

구매

종이책 정가 19,800원

전자책 정가 15,000원

판매가 13,500원 (10%)

도서소개

인공지능 ICT 정책 담당자가 사업을 진행하며 공부한 바를 정리한 AI 개념 해설서다. 현장에서 직접 겪은 인공지능에 관한 오해와 궁금증을 상세하게 풀어냈다. 단계별 구성, 풍부한 그림 자료 등을 바탕으로 인공지능의 핵심 개념과 원리를 누구라도 쉽고 빠르게 익힐 수 있도록 도와준다. 이 책은 당장 실무에 뛰어들어야 하지만 기초가 전혀 없다고 느끼는 사람이나 일반인과 학생 중에서 인공지능을 알고 싶은 사람에게 인공지능을 올바로 알려 실질적인 도움을 주는 것을 목표로 한다.

저자소개

한국지능정보사회진흥원 인공지능융합본부 AI융합확산팀 수석연구원. ICT(정보통신기술) 정책 사업을 20년째 해오고 있다. 서울시 심야 버스 노선 개발, 데이터 기반 감염병 대응 등 사회적으로 의미 있는 과제를 다수 발굴해 지원했다.

디지털 전환 사업에 필수 요소로 자리 잡은 인공지능과 제반 기술에 관심이 많아 AI 공부를 계속해 왔다. 사람들이 인공지능을 향한 과도한 기대나 우려에 빠지지 않고, 기술과 데이터를 근거로 인공지능의 진짜 모습을 이해하기를 바란다. 올바른 이해가 있어야 미래를 제대로 준비할 수 있다고 믿기 때문이다. 이 같은 신념을 바탕으로 공공기관 대상 강연을 하고, 정책 사업을 추진하는 등 인공지능 사업 집행을 직간접적으로 돕고 있다. ‘빅데이터?질문을 명확히 하라’ ‘빅데이터?이렇게 쓸 수 있다’ 등의 글을 썼으며, 고등학교 교과서 《데이터과학과 머신러닝》 개발에도 참여했다.

목차소개

머리말 인공지능의 구조와 원리를 제대로 이해하는 길잡이

I 인공지능의 부상

컴퓨터가 그림을 읽다니
인공지능의 정의
인공지능 용어의 오용
인공지능 기술의 역사
인공지능 주요 사례

Ⅱ 데이터와 인공지능

데이터의 유형별 구분
데이터를 분석하고 활용하는 법
손이 많이 가는 데이터
빅데이터와 인공지능
데이터 분석 모델이란?
데이터 분석 ? 활용의 주요 사례

III 머신러닝

머신러닝의 정의
일차함수의 등장
가설식의 의미
가중치 구하기의 어려움
선형회귀
손실 비용 산출
경사하강법
기계학습 실습해 보기
다항 선형회귀
이진분류
다중분류
그림을 읽는 컴퓨터
MNIST 데이터세트
이미지 인식하기

IV 딥러닝

뉴런
퍼셉트론
퍼셉트론 검증하기 ①
퍼셉트론 검증하기 ②
다층 퍼셉트론의 등장
다층 퍼셉트론의 의의
DNN
개발 패러다임의 변화
CNN ①
CNN ②
CNN ③
RNN
RNN의 활용

V 비지도학습

기계학습의 3대 유형
글자 · 단어 예측 모델의 지도학습
비지도학습의 개념
K-means
GAN

VI 강화학습

강화학습의 원리
강화학습의 활용 사례
온실 속 강화학습?

Ⅶ 대규모 언어 모델

ChatGPT의 등장
머신러닝의 이슈가 된 LLM
자연어 처리
자연어 처리로 구현되는 주요 기능들
자연어 처리 기술의 도약
워드 임베딩의 기본 개념
워드 임베딩이 단어를 표현하는 방법
전이학습의 기본 개념
자연어 처리 분야에서의 전이학습
대규모 언어 모델의 전이학습
다양도로 전이학습되는 대규모 언어 모델
언어 모델의 기본 개념
언어 모델 개념의 확장
인코더-디코더 모델
컨텍스트 벡터
어텐션이 필요한 이유
어텐션 메커니즘
트랜스포머
트랜스포머의 어텐션
트랜스포머 메커니즘의 특징
대규모 언어 모델-BERT와 GPT
BERT와 GPT의 출력
고성능 언어 모델의 비결 ①
고성능 언어 모델의 비결 ②
대규모 언어 모델의 한계
대규모 언어 모델 출현의 의의
결국 똑같은 기초 원리

Ⅷ 고성능 기계, 그리고 사람

AI 기술의 취약점 ①
AI 기술의 취약점 ②
AI 기술의 취약점 ③
AI 기술의 극악한(?) 속성
인공지능은 결국, 데이터
데이터 정제와 레이블링
언어 모델을 위한 데이터 확보
인공지능은 지능을 갖췄는가
강인공지능과 약인공지능
강인공지능의 출현 가능성
범용 인공지능
행동 모델의 가능성
휴머노이드와 함께하는 세상
AI 서비스의 개발 과정
AI 전문가가 되려면
우리는 앞으로 어떻게 대응해야 할까?

참고 문헌
그림 및 사진 출처
찾아보기

회원리뷰 (0)

현재 회원리뷰가 없습니다.

첫 번째 리뷰를 남겨주세요!